GRACE & GNSS

B. Mircheva (1,2), U. Meyer (3), M. Tsekov (1) and G. Guerova (1)

(1) Faculty of Physics, Sofia University, Bulgaria (2) Bulgarian Air Traffic Services Authority (3) Astronomical Institute, University of Bern, Bern, Switzerland

4th scientific seminar "Physics and chemistry of the Earth System" 9-11 October, 2022, Banya

Motivation

NatCatSERVICE

Weather-related loss events in Europe 1980 – 2015 Number of events

© 2016 Münchener Rückversicherungs-Gesellschaft, Geo Risks Research, NatCatSERVICE – As at January 2016

Munich RF 🚎

Hydrological cycle

SYNOP, GRACE and GNSS data sets: 2003-2014

Data

- temperature and precipitation 2003-2014 SYNOP Station Sofia
- GNSS Integrated Water Vapour 2003-2013 IGS repro1 GNSS SOFI station
- Terrestrial Water Storage Anomaly- GRACE Level 2 monthly gravity variations (AIUB-RL02) and 2003-2014-EGSIEM (CSR, GFZ and JPL)

Method

- extreme dry and wet periods in Bulgaria 2007 and 2014 case studies
- monthly mean anomalies
- Seasonal-trend decomposition of time series¹

$$X_{ts} = X_{long} + X_{seas} + X_{res} \tag{1}$$

Drought Severity Index² and Standardized Precipitation Index³

$$DSI_{i,j} = \frac{TWSA_{i,j} - TWSA_j}{\sigma_j}, SPI_{i,j} = \frac{P_{i,j} - P_j}{\sigma_j}$$
(2)

¹Cleveland et al., 1990

²Zhao et al., 2017

³McKee et al., 1993

GNSS tropospheric product - IWV from SOFI GNSS Station

first reprocessing campaign of the International GNSS Service (IGS repro1)

$$ZWD = ZTD - ZHD$$
(3)

$$WV = k.ZWD$$

(4)

Gravity Recovery And Climate Experiment (GRACE)

Results - 2007 anomalies and long-term trends

2007	J	F	M	Α	М	J	J	A	S	0	Ν	D
Т	5	3	+	+	+	+	2	+	-	-	-	-
P	-	-	-	+	+	+	-56	+	+	+	+	-
IWV	+	+	-	-	+	+	-2.7	+	-	+	-	-
TWSA	-64	+	-	-	-	-	-	-82	-	+	+	+

Results - long-term trends ($X_{long} = X_{ts} - X_{seas} - X_{res}$)

- Moderate negative correlation between T and P (-0.4), T and TWSA (-0.6)
- Moderate to high positive lagged correlation between P and TWSA (0.7, lag=4)

Drought Severity Index (DSI) and Standardized Precipitation Index (SPI)

Moderate cross-correlation coefficient between DSI and SPI (0.4,lag=3)

Results - long-term trends

Conclusion

- synergy between surface and satellite observations used to study extreme wet and dry periods in Bulgaria
- demonstrate the potential of IWV and TWSA time series in studying the regional characteristics of hydrological cycle
- 2007 positive T and negative IWV, P and TWSA. 2014 negative T and positive P and TWSA
- observed time step between precipitation and TWSA
- DSI vs SPI moderate cross-correlation coefficient of 0.36 (lag=3)

Reference:

1) Mircheva et al., 2017, Anomalies of hydrological cycle components during the 2007 heat wave in Bulgaria, Journal of Atmospheric and Solar Terrestrial Physics, 165-166, 1-9, 10.1016/j.jastp.2017.10.005.

2) Mircheva et al., 2020. Analysis of the 2014 Wet Extreme in Bulgaria: Anomalies of Temperature, Precipitation and Terrestrial Water Storage, Hydrology, 7(3), 66, https://doi.org/10.3390/hydrology7030066.

THANK YOU!

