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Abstract: Traffic models have gained much popularity in recent years, in the context of smart cities
and urban planning, as well as environmental and health research. With the development of Machine
Learning (ML) and Artificial Intelligence (AI) some limitations imposed by the traditional analytical,
numerical and statistical methods have been overcome. The present paper shows a case study of
traffic modeling with scarce reliable data. The approach we propose resorts on the advantages
of ensemble learning using a large number of related features such as road and street categories,
population density, functional analysis, space syntax, previous traffic measurements and models,
etc. We use advanced regression models such as Random Forest, XGBoost, CatBoost etc., ranked
according to the chosen evaluation metrics and stacked in a weighted ensemble for optimal fitting.
After a series of consecutive data imputations we estimate the annual average daily traffic distribution
in the street and road network of Sofia city and the metropolitan municipality for 2018 and 2022, and
the NO2 levels for 2021 with accuracy resp. 78%, 74% and 92%, using AutoGluon and Scikit-Learn.

Keywords: urban traffic models; machine learning; multiple regression; data imputation; AutoML

1. Introduction

Transport models for urban and intercity traffic are a valuable tool for optimization and
planning of mobility and accessibility, estimation of environmental pressures, sources and
dispersion of chemical pollutants, such as carbon monoxide, sulfur dioxide and nitrogen
oxides, inhalable particulate matter, as well as more precise evaluation of traveling time.
Machine learning and deep learning algorithms provide increasingly accurate results in
this field (we refer to [1,2] for a brief review on the subject). In particular, ensemble learning
algorithms [3] prove quite useful in traffic, pollution or landscape models with lots of fuzzy
data. They are less prone to over-fitting than neural networks, do not require extensive
preprocessing, allow for nice hyper-parameter tuning and seem to be immuned against
problems like multicolinearity. Our most preferred tools are Random Forest (RF) which
has become the standard in this field [4], Extreme Gradient Boosting (XGB) that became
famous in Kaggle competitions shortly after its release, as well as the WeightedEnsembleL2
algorithm proposed by the Python AutoML module (AutoGluon) we use for ranking,
optimization and training of the models. AutoML tools are intuitive to work with and
rather fast, but more importantly they provide a convenient framework for us to conduct
more complex studies, e.g., considering the multi-modal setting [5] in which satellite or
drone images are used along with tabular continuous, categorical and text data. Such
models would have been quite difficult to implement with only the standard data science
libraries, but lately they have become a standard approach in the field [6]. This study,
however, relies on the classical tabular data of various sorts, as a case study, in the spirit
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of [7,8]. Namely, we work with estimates of average traffic values, focusing only on spatial,
not temporal distribution and use multi-feature regression to impute the missing values.
Some studies rely on probabilistic methods, such as PCA [9,10], deep learning [11] or
Markov chains [12]. This article evaluates the performance of ’bagging’ (RF), ’boosting’
(XGB) and ’stacking’ (weighted ensemble) algorithms which have been studied for the
purposes of both applied and fundamental research tasks related to air pollution, health and
urban development performed in the context of intermediate scarcity of data, hardware,
software, human and financial resources for the related degrees of complexity. There are
few studies that use the ensemble learning approach for traffic related issues, more often
oriented towards traffic speed [13], congestion [14] and traffic flow prediction [15], while
in [7] the authors use a similar approach for a country-scale annual average daily traffic
estimate. Thus, we believe our study fills a gap in the contemporary urban traffic ML
modeling, especially related to Eastern European cities and other similar case studies.

The case of Sofia in the context of Bulgaria and South-Eastern Europe can be described
as exemplary for the low level from which the city started its environmental, green urban
transition [16] and the many but still rarely well coordinated political and expert-led efforts
resulting to moderate or even seemingly strong achievements [17] on the one hand, while
on the other, the persistence of traffic air pollution and related problems, as well as low
availability of traffic data for actual transport modeling. This includes discontinuities and
many inconsistencies in data gathering, storing and management in a semi-transparent
and relatively poorly communicated process among various institutions, experts and the
scientific community. Our sincere hope is to see some significant improvement in the
coming years, so that the ML algorithms could become even more helpful in these digitally
underdeveloped cities for purposes of traffic optimization, environmental and especially
air pollution screening.

The article begins with a brief preliminary section explaining the basic principles
behind ensemble learning algorithms, followed by description of the materials and methods
used, including the data sources, pre-processing and design of the ML algorithms. Their
performance and and the quality of the results is commented in a separate section and we
end with a discussion attempting to position our case study in the broader context of traffic
modelling and related issues such as pollution and public health in large urban areas.

2. Preliminaries: Ensemble Learning Algorithms

In this section we provide a brief intuitive explanation of the main concepts in the
ensemble learning techniques we rely on for tabular prediction in our study. However, they
are quite promising also as classification algorithms and perform nicely in the multimodal
setting combining text, tabular and image/sound data (see [5] for more details).

2.1. Decision Trees and Random Forests

ML and AI algorithms perceive the world as a black box model—pretty much as humans
do, at least beyond the scale of their everyday experience and scientific knowledge. Both
humans and machines tend to learn and improve from their mistakes or wrong predictions—the
efficiency of this process (not the absence of errors) is how we usually measure intelligence, be it
natural or artificial. This corrective process has different mechanisms to manifest itself—from
dopamine cycles in mammals to ’back-propagation’ in neural networks. Both units, however,
have the tendency to be either too broad (underfitting) or too specific for the training data
(overfitting) in their estimates when facing a problem with overwhelming complexity, e.g.,
making a reliable weather forecast. This phenomenon is known as the ’bias-variance trade-off’.
One possible strategy to make the model more inclusive without sacrificing much precision is to
allow the major decisions to be taken by some sort of democratic voting process. Typically the
atomic constituents of an ensemble model would be decision trees—relatively simple algorithms
using straightforward binary logic derived from experience to predict outcomes in unknown
situations, e.g., a simple (multi-label) classification tree would rate a person ’overweight’ if
their body mass index (BMI) exceeds 25 and ’underweight’ if is below 18. For more complex
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decisions, however, single trees tend to overfit drawing absurd conclusions like ’the last time
we did not please the gods, there was draught, so we need human sacrifice’. Ensemble learning
is a democratic concept that embraces the imperfection of individual trees and turns it into
an advantage—a large group of ’weak learners’ has better chances of success than a single
’strong learner’, pretty much like in wild nature. But if all trees are fed the same data and
obey identical set of binary rules, they would simply behave as clones, not contributing to the
collective advancement. So, weak learners are trained on different datasets, obtained from
the original one via bootstraping (random sampling with replacement), so they have different
backgrounds. To ensure even more diversity of opinion, ensemble learning also gives different
’way of thinking’ for individual trees by providing them with different subsets of features. In
the end, certain trees turn out to be better adapted for certain situations, some turn out to be
rather ’brilliant’, others-quite ’dumb’, but this way the collective decision is well protected
against both underfitting and overfitting—this whole process is known as ’bagging’. In the
Random Forest algorithm for instance, it is taken by majority vote in the case of classification
and simple averaging for regression problems. This seemingly primitive Greek-type democracy
provides great results in rather complex problems involving traffic, weather, ecology, social
phenomena etc. Speed is a major issue in this setting, but the algorithm is perfectly suited for
parallel processing, so it scales nicely.

2.2. Bagging vs. Boosting vs. Stacking

An alternative to the horizontal equity-type structure of Random Forest is relying on
natural hierarchies to advance the system. The idea is to start with a simple base model
trained on all available features and after accessing its performance, run it again but with
biased data, shifted towards instances, for which it failed to give good predictions. This
process is repeated over and over, like a karma cycle, until it is sufficiently refined, and the
final result is given as a weighted sum of the predictions of all its versions (reincarnations).
This process is known as ’boosting’ and typically works with decision trees with specific
structure in different algorithms, e.g., ’stumps’ in AdaBoost, leaf-wise growing in Light
GBM, symmetric ones in CatBoost. In particular, gradient boosting uses gradient descent
for adjusting the weights and XGBoost provides an improved version which runs much
faster, handles missing values on its own and defies the risk of overfitting to a large extend.

Finally, once we have trained a number of ensemble (or other) models, and ranked
their performance according to a proper evaluation metric, we can obtain our predictions
based on all of them, through a process named ’stacking’. That is yet another weighted
sum, this time on a higher level of hierarchy, which AutoGluon does automatically in
WightedEnsemble_L2. The idea is again that different approaches of decision making
balance each other and thus a lot of their imperfections are being cancelled out. Our
experiments confirm this expectation as the ensemble method wins in all scenarios, except
for one particular case of very biased data which we might discard from the very beginning.

2.3. Optimization and Evaluation Metrics

Complex algorithms like Random Forest and XGBoost that we use here, have addi-
tional intrinsic parameters (hyperparameters), such as the learning rate or the maximal
depth of trees, whose optimal values differ according to the specific context. To make it
even worse, some of these parameters are categorical, e.g., the type of activation function
in classification problems. Hence, hyperparameter tuning is a highly non-trivial problem
in of itself and requires lots of computational power to determine how the default values
need to be altered in each particular case in order to benefit the overall performance of
the model, so instead of brute-forcing with GridSearch, we use RandomizedSearch which
runs much faster at the expense of allowing some uncertainty. The evaluation is being
done via k-fold cross-validation, which means the training-test data split is performed k
times and the corresponding metric values are then being averaged for the overall outcome.
This way we avoid false evaluation due to biased data in a specific sample. As for the
evaluation metrics, for regression problems it is customary to use the so-called coefficient
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of determination r2, equal to the square of the Pearson correlation coefficient. Another
commonly used predictor of accuracy is the mean absolute percentage error MAPE, i.e.,
the average of the absolute values of all relative errors in the predictions. What we refer to
as ’accuracy’ here is simply 1 − MAPE [%], evaluated using cross-validation (just like r2).

3. Materials and Methods

We tackle the problem with the overwhelming amount of missing traffic data (in some
cases more than 99.5%) by using a wide variety of features, grouped in several categories:

• infrastructure including the street class, capacity, pavement, number of directions etc.
• space syntax: integration and choice parameters with averaged distance
• functional analysis: points of interest and cadastral built-up area data modeled as

concentration of activities and motorized users
• demographics: density of motorized inhabitants
• measured data: several traffic counts on primary and secondary streets and national

roads, NO2 levels.

Some of the features we use are already a result of modeling, e.g., the Open Transport
Map (OTM) traffic model, as well as interpolations of different results from previous studies.
Table 1 describes briefly the different features we use as predictors in our model (cf [18,19]).

Table 1. Features used for training the ML model.

Column Name Data Content Values

baseTYPE street type classification 40, 736
IMMIS_RT traffic situation typology 7637
C_KAPAZ estimated road capacity 7637
StrDMNDRCT number of directions 40, 736
EMIT_SPEED speed limit 7637
EMIT_GRDNT street slope (gradient) 7637
SSINTr_ln space syntax (integration) 40, 736
SSCHr_ln space syntax (choice) 40, 736
X0, Y0 coordinates of the centroids 40, 736
OTMsurface Open Transport Map (OTM) street surface type 5710
OTMtraffic OTM traffic model 7637
TT200mHMc TomTom traffic count data heat map r = 200 m 7637
ACTUSEmean heatmap r = 200 m estimated motorized users POI and cadastral data based 40, 651
ACTLIVmean heatmap r = 200 m estimated motorized inhabitants census based 40, 497
exIDWmean IDW-interpolated point-based RF traffic model 1 7637

1 We used clusterization into segments according to traffic and consecutive data imputation with RF-regression.

These are quite different types of data, as is their role in our model. The first few
groups are categorical and we encode them as dummy variables. Together with the space
syntax and demographic features they can be used for clustering of the data set which
may improve the prediction accuracy significantly as we have seen in our previous studies.
However, some of the clusters in this particular case end up with too few values to train and
test the model, thus we only use the street type and distinguish between primary (type A)
and secondary (type B) urban street network. Type A (7637 rows of data) consists of major
traffic arteries, including city highways and boulevards, while type B (33,099 rows) includes
secondary streets with much smaller traffic capacity. The geographic coordinates, which
also play important role in our model, correspond to the centroids of the street segments
described by each row in the data set. Naturally, the measurements of population density,
activities, pollution etc. have not been conducted exactly in those points, so we use heat
map and inverse distance weighted (IDW) interpolation or nearest joins to obtain a good
estimate of those values in the corresponding row. As for the traffic count, as it is usually
conducted at crossroads, we also need such techniques to evaluate it for street segments
and hence to their centroids, by averaging. We rely on different sources for the different
years—some provide an estimate for the daily or yearly average, others—time series for
specific days of the year. We also conducted our own counts in certain points of the urban
network, and estimated the corresponding daily average using the temporal dynamics
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for the ’nearest’ (with respect to the distance matrix) location, for which it is available. As
might be expected, the model for the secondary streets feeds on much less features as less
measurements are available for this neglected part of the urban infrastructure. However,
it relies on a much larger number of training rows. The correlations are illustrated with
heat maps in Figure 1. We also note that the problem of multicolinearity does not bother us
since we use ensemble learning algorithms that are unaffected by it. For the same reason
no data normalization has been performed—the only preprocessing we did was cleaning.

(a) primary urban street network (b) total urban street network

Figure 1. Correlation heat map for the features and target variables used in the model.

4. Results

Next, we present the experimental results of our manipulation with the data and their
interpretations, starting with the technical parameters of the machine learning algorithms.

4.1. The Primary Street Network

Our strategy is to build up to the traffic model gradually, starting with data imputation
for the features that are useful in the training process and cannot be reliably interpolated.
Note that there are two different data rows for the average daily traffic in 2018 (the third one
is a mix) as there are two sources of measurements. ’API18’ shows clear signs of overfitting—
the reason being not the selected algorithm but the data bias: all measurements have been
done in strongly correlated segments from the major traffic arteries, near the city rings.
Hence, we dismiss this prediction, as well as the one for the merged columns, considering it
to be infested by this bias (’API16’ has a similar problem). Other measurements cover only
small time intervals and the corresponding daily averages have been evaluated using the
temporal dynamics for the nearest (with respect to the origin-destination matrix) network
vertex for which such data is available. All this naturally amounts to an error that is
difficult to estimate. So, we have one type of data that is time-averaged but lacks sufficient
spatial coverage (’API’) and another one, much better put coordinate-wise while based on
time-limited measurements (’DUAT’). The situation with nitrogen dioxide levels resembles
the latter while ’SO22N’ mixes different sources and is a compromise between the two.
As our study is focused on spatial distribution, its natural target variables are ’DUAT18’,
’SO22N’ and ’NO2’, while we treat other features merely as an aiding tool for the models.

Table 2 above shows the accuracy of ensemble learning regression algorithms used for
data imputation, while Figure 2 illustrates how our models perform on the primary street
network when sufficient amount of training data is available and when that is not the case.
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Table 2. Features with missing values predicted by the corresponding model 1.

Feature Content % Missing Model Accuracy r2

OTMcapacit capacity 25.23% XGB/RSO 82.62% 0.83

NM17_1h hourly 2017
traffic count 93.70% WE_L2 64.29% 0.94

NO2 NO2 levels 99.21% WE_L2 90.04% 0.74
API16 road traffic 92.61% XGB/RSO 92.60% 0.91

DUAT180416 street traffic 60.05% WE_L2 80.02% 0.43
SO22N street traffic 99.36% WE_L2 78.84% 0.33

API18 bidirectional
road traffic 99.63% WE_L2 81.33% 0.97

MIX18 mixed traffic 97.81% WE_L2 71.68% 0.45
DUAT18 street traffic 98.18% WE_L2 67.95% 0.25

1 Ranked by accuracy based on MAPE (mean absolute percentage error) estimates. We also use the abbreviations:
RSO (Random Search Optimization), WE_L2 (Weighted Ensemble_L2), XGB (Extreme Gradient Boosting).

(a) hourly traffic count in 2017 (b) average NO2 levels in 2021

Figure 2. Predictions and test data for different features.

It is worth mentioning also the feature importance of different parameters. We show
two examples in Figure 3. This marker shows how each feature affects the performance
and accessing it allows us to understand the models better and improve them dynamically.

Table 3 below demonstrates how AutoGluon ranks the best performing algorithms
with respect to a chosen evaluation metric, in this case the coefficient of determination
is r2. The values are obtained via cross validation and the ranking using MAE or MAPE
is similar. The tables for all modeled features look quite alike. In some cases instead of
AutoGluon we use the standard RF or XGB regressors and possibly fine parameter tuning
with random search optimization, as shown in Table 2 as well as Table 4 in the next section.

Table 3. Best performing models for the NM17_1h data imputation task according to AutoGluon 1.

Model Score_Val Fit_Time Fit_Order

WeightedEnsemble_L2 0.894 23.48 9
RandomForestMSE 0.881 0.715 3
XGBoost 0.881 1.639 7
NeuralNetTorch 0.863 20.33 8
ExtraTreesMSE 0.848 0.637 5
CatBoost 0.763 3.560 4
NeuralNetFastAI 0.576 1.354 6

1 The coefficient of determination r2 calculated via cross-validation is used as evaluation metric (score_val).
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(a) 2018 (b) 2022

Figure 3. Feature importance in experimental daily street traffic models for two different years.

4.2. The Entire Street Network

Unfortunately, methodologically sound gathering of traffic data for cities like Sofia is
still a luxury at this point. We have to settle with the latter case and this is the reason behind
our choice to use as input data an array of categorizations, direct entry or nearest joins
of attribute records from the strategic noise map as well as NO2 levels (which were later
processed by our ML model), IDW interpolation of point-based RF traffic model data for
the junctions of the primary street and road network and heat map techniques with radius
of 200 m providing continuity and granularity of uneven data, e.g., from sample based
traffic counts of TomTom and functional analysis of points of interest or address points
with assumed motorization rates of users or inhabitants. As for the secondary streets we
have too few measurements, we use our own randomly sampled short-term observations
from 2021 at the city scale and for 2022 in the extents of official low emission zones (cf [20]).

Figure 4 illustrates two features that become more important from the model as we go
farther from the main streets, and have to do more with demographics and urban dynamics,
while on Figure 5 we also show the predictions of our traffic ML models for 2018 and 2022.

(a) motorized residents (b) users of daily activity points of interest

Figure 4. Distribution of inhabitants (measured in thousands) used in urban functional analysis.
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(a) 2018 (b) 2022

Figure 5. Scatter plot of the average hourly traffic for different years predicted with AutoGluon.

Let us point out that the role of different hyperparameters remains somewhat obscure
in the weighted ensemble as various different models take place in the stacking process.
For this reason we do not pay special attention to hyperparameter tuning (it is a standard
part of the AutoML embedded optimization). Note that we use single model predictions
(either RF or XGB) only to impute missing data for some of the intermediate features, and
not the actual target variables. Even if we use fine tuning (RSO), the predictive power of
the features, e.g., the road traffic in the ’API’ and ’NM17’ categories, is relatively low and
they only ’balance’ the model. Despite the reasonably high accuracy for these predictions,
we do not consider them to be a reliable end product of our study, the reason being that
the data samples are far from representative for the urban traffic when restricted only to
the intercity roads or separate hours of counting in different days. ’DUAT’, ’SO’ and ’NO2’
measurements on the other hand have this property, being more comprehensive, so the
only results of scientific and practical value we claim here are for these target variables.

Table 4. Features with missing values predicted for the whole city network (see [19–24] for raw data).

Column 1 Content Missing Data Best Model Accuracy r2

ACTUSEmean active users of
functions 0.21% RF 97.36% 0.97

ACTLIVmean density of
inhabitants 0.59% RF 97.88% 0.98

API16 road traffic 98.62% RF 93.57% 0.90
DUAT180416 street traffic 92.51% WE_L2 88.83% 0.69

NM17_1h hourly noise
map traffic 99.82% WE_L2 84.10% 0.91

NO2 NO2 levels 99.85% WE_L2 91.90% 0.80
API18 road traffic 99.93% XGB/RSO 90.92% 0.61

DUAT18 street traffic 81.25% WE_L2 77.78% 0.24
SO22CC street traffic 99.79% WE_L2 69.12% 0.67

DUAT18/WE_L2 modeled 81.25% WE_L2 95.06% 0.65
SO22CC/WE_L2 modeled 81.16% WE_L2 94.22% 0.92

1 The last two rows refer to already modeled data (Table 2), while ’SO22CC’ includes also some small streets.

5. Discussion

The present piece of research is a part of a broader research project focused on urban
development scenarios, mobility, air quality and health, particularly on the path to more
integrated modeling methodology development and in the context of digital transition
priority themes in the European Union, Bulgaria and Sofia municipality [25–27]. Our effort
was preceded by other modeling experiments [20,28], the latter being used for air pollution
dispersion modeling and simulations [29]. They illustrate the valuable aid of various
machine learning methods in revealing traffic patterns based on quantitative and qualitative



Appl. Sci. 2023, 13, 4678 9 of 12

data. The main question we pose is “What are the optimal ML algorithms for urban and
peri-urban traffic modeling using various indirect features, some including incomplete
and/or low resolution data?”. The obvious application is a commonly encountered setting,
in which data gathering or access practices don’t work smoothly enough to allow for
good governance, planning and management of transportation, optimal development
and healthy urban environment, leading to health issues and seriously reduced quality
of life for the urban population of numerous cities. Therefore, at the EU level there
are several legislative and political frameworks that support the implementation of new
approaches, methods and techniques, which can benefit from the ML advantages and
ML techniques can be performed in more consistent way, namely the intelligent transport
systems [30], the sustainable and smart mobility [31], the current and future air quality
modeling requirements [32], the access to public information [33] and the infrastructure for
spatial information [34]. Most of these policies are either transposed in the legislation or
officially supported at the national level of EU member states. Various national or regional
agencies and local authorities adhere to the practices of decentralized management and
accessibility of data. In many instances, however, expert and institutional environments are
not built on mutual trust but on opportunistic distribution of influence leading to separate
campaigns of provision of public data, especially in the domain of traffic, while there are
cities and whole regions with severe environmental burden caused by air pollution, plus
other transport related problems, such as noise, whose abatement seems really slow [35].

6. Conclusions

The present study focuses on the problem of missing traffic data values for cities with
underdeveloped informational infrastructure, choosing Sofia as a good example. Such
cities are often neglected by researchers as it is very hard for them to find reliable data in
order to feed their models. However, the problems with traffic, pollution and health issues
are usually worse namely in those cities, so it is worth putting some extra effort. Sofia is by
no means too much lagging behind capital city, but falls behind in terms of data gathering
and sharing, 5G and IoT infrastructure, data warehouses, etc., like many other cities in
Eastern Europe and globally with similar problems. Here we focus mainly on the overall
traffic estimates, using pollution only as a predictor, but this study is just a part of a broader
research project aiming to tackle environmental and health issues in Sofia, for which urban
traffic seems to play a crucial role in the air pollution emissions generation counterpart.
Based on the results presented in this paper, it seems that our faith in ensemble learning
algorithms has been justified. They outperform other standard machine learning and
statistical tools in most urban traffic modeling settings—quite a ’muddy’ area of research
by accuracy standards. Nevertheless, even with a relatively small sample of reliable data,
covering a diverse enough set of features sufficiently correlated with the target variable,
it is still possible to obtain reasonable prediction, as we demonstrate here for the city of
Sofia. While still waiting for better data management and sharing environment that could
feed our future models more abundantly, we continue to dedicate efforts to optimise and
test the our current findings. We dig deeper in the available data for the reanalysis of air
pollution measurements, in recent years increasingly linked to transportation activities, but
also in relation to noise and access to green areas. We consider the present study a step
towards building plausible scenarios for the near future urban development, environment,
mobility and health related policies based on modeling the mitigation for the negative
effects of traffic and other air pollution sources thanks to the combination of wise transport
and green infrastructure development.
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