Ensemble learning models for data imputation and forecasting

Danail Brezov

Department of Mathematics, UACEG

Физика и химия на Земята, атмосферата и океана 25-27 септември, 2023

4 3 6 4 3

Why do we want to study the city traffic?

Major traffic arteries of Sofia city.

prompt for infrastructural upgrades
 urban planning & incentives policies
 correlated with noise, pollution, etc.
 major cause of stress & health issues
 strong predictor for the quality of life
 weather & climate anomalies in DPA
 a fun toy model for complex systems

What do we have so far?

A DO THE WITCOM

- scarcity of measuring devices and low level of integration
- ② inefficient collaboration between institutions and NGO's
- S many problems with both data reliability and availability

Low-resolution maps of inner-city pollution with PM, NO2, traffic noise.

Setting	of	the	problem
000 Ŭ			

Our results

Discussion 0000

Related publications:

Za Zemiata. Spatially Based Scenarios for Introduction of Low Emission Zones in Stolichna Municipality (2023) https://www. zazemiata.org/resources/report-transport-lez-sofia/.

- Burov, A., Brezov, D. Transport Emissions from Sofia's Streets -Inventory, Scenarios, and Exposure Setting. In *Environmental Protection and Disaster Risks*; Dobrinkova, N., Nikolov, O., Eds.; EnviroRISKs 2022: Lecture Notes in Networks and Systems; Springer: Cham, Switzerland, Volume **638** (2023).
- Dzhambov A., Dimitrova V., Germanova N., Burov A., Brezov D., Hlebarov I., Dimitrova R., Joint associations and pathways from greenspace, traffic-related air pollution, and noise to poor self-rated general health: A population-based study in Sofia, Bulgaria, Environmental Research 116087 (2023).
- Brezov D. and Burov A., Ensemble Learning Traffic Model for Sofia: A Case Study, Applied Sciences 13(8):4678 (2023)

What data can we rely on?

Table 1	Features	used	for	training	the	ML	model.
---------	----------	------	-----	----------	-----	----	--------

Column Name	Data Content	Values
baseTYPE	street type classification	40,736
IMMIS_RT	traffic situation typology	7637
C_KAPAZ	estimated road capacity	7637
StrDMNDRCT	number of directions	40,736
EMIT_SPEED	speed limit	7637
EMIT_GRDNT	street slope (gradient)	7637
SSINTr_ln	space syntax (integration)	40,736
SSCHr_ln	space syntax (choice)	40,736
X0, Y0	coordinates of the centroids	40,736
OTMsurface	Open Transport Map (OTM) street surface type	5710
OTMtraffic	OTM traffic model	7637
TT200mHMc	TomTom traffic count data heat map $r = 200 m$	7637
ACTUSEmean	heatmap r = 200 m estimated motorized users POI and cadastral data based	40,651
ACTLIVmean	heatmap $r = 200$ m estimated motorized inhabitants census based	40,497
exIDWmean	IDW-interpolated point-based RF traffic model ¹	7637

¹ We used clusterization into segments according to traffic and consecutive data imputation with RF-regression.

・ 同 ト ・ ヨ ト ・ ヨ ト

э

イロト イボト イヨト イヨト

э

- many automated features in just a few lines of code
- rich libraries and powerful stacking algorithms
- multi-modal learning (tabular data, text and images)

4 E b

Our results

So, let's start cooking..

Correlation heat map of the numerical features: primary vs. total SN.

< 口 > < 同 > < 三 > < 三

Assessing the performance: primary street network

		11 . 11 .1	
Table 2. Features with	n missing values	predicted by the	corresponding model ¹ .

Feature	Content	% Missing	Model	Accuracy	r ²
OTMcapacit	capacity	25.23%	XGB/RSO	82.62%	0.83
NM17_1h	hourly 2017 traffic count	93.70%	WE_L2	64.29%	0.94
NO ₂	NO ₂ levels	99.21%	WE_L2	90.04%	0.74
API16	road traffic	92.61%	XGB/RSO	92.60%	0.91
DUAT180416	street traffic	60.05%	WE_L2	80.02%	0.43
SO22N	street traffic	99.36%	WE_L2	78.84%	0.33
API18	bidirectional road traffic	99.63%	WE_L2	81.33%	0.97
MIX18	mixed traffic	97.81%	WE_L2	71.68%	0.45
DUAT18	street traffic	98.18%	WE_L2	67.95%	0.25

¹ Ranked by accuracy based on MAPE (mean absolute percentage error) estimates. We also use the abbreviations: RSO (Random Search Optimization), WE_L2 (Weighted Ensemble_L2), XGB (Extreme Gradient Boosting).

4 B K 4 B K

Setting of the problem	The statistical model	Our results	Discussion
000	000	00●0000	0000

Table 3. Best performing models for the NM17_1h data imputation task according to AutoGluon ¹.

Model	score_val	fit_time	fit_order
WeightedEnsemble_L2	0.894	23.48	9
RandomForestMSE	0.881	0.715	3
XGBoost	0.881	1.639	7
NeuralNetTorch	0.863	20.33	8
ExtraTreesMSE	0.848	0.637	5
CatBoost	0.763	3.560	4
NeuralNetFastAI	0.576	1.354	6

¹ The coefficient of determination r² calculated via cross-validation is used as evaluation metric (score_val).

.

Assessing the performance: secondary street network

Table 4. Features with missing values predicted for the whole city network (we refer to [19], [21-25]).

Column ¹	Content	Missing Data	Best Model	Accuracy	r ²
ACTUSEmean	active users of functions	0.21%	RF	97.36%	0.97
ACTLIVmean	density of inhabitants	0.59%	RF	97.88%	0.98
API16	road traffic	98.62%	RF	93.57%	0.90
DUAT180416	street traffic	92.51%	WE_L2	88.83%	0.69
NM17_1h	hourly noise map traffic	99.82%	WE_L2	84.10%	0.91
NO ₂	NO_2 levels	99.85%	WE_L2	91.90%	0.80
API18	road traffic	99.93%	XGB/RSO	90.92%	0.61
DUAT18	street traffic	81.25%	WE_L2	77.78%	0.24
SO22CC	street traffic	99.79%	WE_L2	69.12%	0.67
DUAT18/WE_L2	modeled	81.25%	WE_L2	95.06%	0.65
SO22CC/WE_L2	modeled	81.16%	WE_L2	94.22%	0.92

¹ The last two rows refer to already modeled data (Table 2), while 'SO22CC' includes also some small streets.

Feature importance

- Thomas and the second
- primary model: street capacity, speed limit, slope, surface type
- 2 secondary street network: functional analysis and space syntax

Functional analysis: motorized residents and users of daily activity POI

Setting	of	the	problem
000 -			

Our results 00000●0 Discussion

Data visualization

The daily average traffic for 2018 and 2022, according to our model.

Imagine if life was always that good to you...

)	<pre>train_data = X.dropna(axis = 'rows')</pre>	
	<pre>label = dat[-1].name</pre>	
	from autogluon.tabular import FeatureMetadata feature_metadata = FeatureMetadata.from_df(train_data)	
	<pre>from autogluon.tabular.configs.hyperparameter_configs import get_hyperparameter_ hyperparameters = get_hyperparameter_config('default')</pre>	config
	hyperparameters	
	<pre># root_mean_squared_error mean_squared_error mean_absolute_error median_absolute</pre>	_error mean_absolute_percentage_error r2
	<pre>from autogluon.tabular import TabularPredictOr predictor - TabularPredict(Idale-label, problem_type = 'regression', eval_metr train_data-train_data, hyperparameters-hyperparameters, time_limit-000, # presets="best_quality") </pre>	<pre>ic = 'mean_absolute_percentage_error').fit(</pre>
	<pre>leaderboard = predictor.leaderboard() leaderboard.sort_values(by='score_val', ascending=False)</pre>	
	pd.DataFrame(leaderboard)	

3 🕨 🖌 3

Setting of the problem

The statistical mode

Our result: 0000000 Discussion ●000

This is a picture of a cow..

Danail Brezov Ensemble learning models for data imputation and forecast

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Our results

Multimodal ML with AutoGluon

Why choose between books and movies when you can have both?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

R^2	MAE	MedAE
0.728	0.11°C	$0.005^{\circ}C$
0.701	$0.13^{\circ}C$	$0.029^{\circ}C$
0.697	$0.11^{\circ}C$	$0.005^{\circ}C$
0.588	$0.19^{\circ}C$	$0.112^{\circ}C$
	R ² 0.728 0.701 0.697 0.588	R ² MAE 0.728 0.11°C 0.701 0.13°C 0.697 0.11°C 0.588 0.19°C

So, maybe that's the way to go from here..

Acknowledgements:

This work has been carried out in the framework of the grant № KП-06-H54/2 'Development of a methodology for air quality and human health risk assessment in urban areas'

supported by the Research Fund at the Bulgarian Ministry of Education and Science.

